JCO Website (Puzzles for the manual solver)

Welcome!

This is a place chosen to make available some ideas (on puzzles, patterns, etc)

that seemed unsuitable for posting in a Forum, but some people may find interesting.

For difficult puzzles (like the next one), possible solutions will not be shown (only hints).

For other puzzles, the solution wil be hidden so that a serious attempt can be made

without direct access to a solution.

(hopefully this will make the puzzles more interesting for newcomers).

Recent Puzzles (1)

Puzzle HP#8 (overall #84) (9x9 Hidoku Puzzle; proposed Oct 26, 2025)

This new Hidoku puzzle ("Tightly tied knot ?") has an easy start, but becomes tough later.

Hidoku Puzzle

Hint (Final update)
,------------------------------------,
| __  49  __  69  __  81  __  __  __ | 9
| 47  __  52  54  __  __  79  77  __ | 8
| __  __  42  __  56  67  __  73  __ | 7
| __  __  __  __  15  __  __  65  64 | 6
| __  __  35  __  01  __  __  __  62 | 5
| __  __  __  __  29  __  __  __  __ | 4
| __  __  __  __  __  27  __  __  __ | 3
| __  __  32  __  __  __  24  21  __ | 2
| __  09  __  __  __  __  __  22  __ | 1
'------------------------------------'
  a   b   c   d   e   f   g   h   i   JCO#6 (Hidoku)
    
Update (Nov 6, 2025)
    
After 28 placements:

,------------------------------------,
|*48  49 *53  69 *70  81 *80 *78 *76 | 9
| 47 *50  52  54 *68 *71  79  77 *75 | 8
|*46 *51  42 *55  56  67 *72  73 *74 | 7
| __  __  __  __  15 *57 *66  65  64 | 6
| __  __  35  __  01 *16 *58 *63  62 | 5
| __  __  __  __  29  __ *17 *59 *61 | 4
| __  __  __  __  __  27  __ *18 *60 | 3
| __  __  32  __  __  __  24  21 *19 | 2
| __  09  __  __  __  __ *23  22 *20 | 1
'------------------------------------'
  a   b   c   d   e   f   g   h   i

The puzzle is locked! How to proceed from here ?
    
Update (Nov 7, 2025)
    
Analyze which of the two possibilities for placing 14 is false.
Notice that (14)d6 restricts a lot rows 3,4,5,6.
    
Update (Nov 8, 2025)

So, a careful analysis of the consequences of (14)d6 leads to
. Three numbers (41,43,45) locked into three cells (a6,b6,c6)
. Two numbers (40,44) locked into two cells (a5,b5)
. Four number (12,34,36,39) locked into four cells (a4,b4,c4,d4)
. Six numbers (03,11,28,33,37,38) locked into six cells (a3,b3,c3,d3,e3,g3)
Now, notice that there is no place for the number 30!

=> 29. (14)d5!!

,------------------------------------,
|*48  49 *53  69 *70  81 *80 *78 *76 | 9
| 47 *50  52  54 *68 *71  79  77 *75 | 8
|*46 *51  42 *55  56  67 *72  73 *74 | 7
| __  __  __  __  15 *57 *66  65  64 | 6
| __  __  35 *14  01 *16 *58 *63  62 | 5
| __  __  __  __  29  __ *17 *59 *61 | 4
| __  __  __  __  __  27  __ *18 *60 | 3
| __  __  32  __  __  __  24  21 *19 | 2
| __  09  __  __  __  __ *23  22 *20 | 1
'------------------------------------'
  a   b   c   d   e   f   g   h   i

This move does not give immediate placements,
but now one can ask: which numbers go to c6,d6 ?
    
Update (Nov 9, 2025)

. 41,43,45 are locked into row 6 [45 at a6/b6, 41,43 at b6/c6/d6]
. 40,44 must be located at row 5 or 6.
. The numbers at c6,d6,c7 must be consecutive to comply with the "corner" d6.
=> 30. (41)!!d6 

[and 5 placements: 31.(40)c6, 32.(43)b6, 33. (45)a6, 34.(39)b5, 35.(44)a4 ]

,------------------------------------,
|*48  49 *53  69 *70  81 *80 *78 *76 | 9
| 47 *50  52  54 *68 *71  79  77 *75 | 8
|*46 *51  42 *55  56  67 *72  73 *74 | 7
|*45 *43 *40 *41  15 *57 *66  65  64 | 6
|*44 *39  35 *14  01 *16 *58 *63  62 | 5
| __  __  __  __  29  __ *17 *59 *61 | 4
| __  __  __  __  __  27  __ *18 *60 | 3
| __  __  32  __  __  __  24  21 *19 | 2
| __  09  __  __  __  __ *23  22 *20 | 1
'------------------------------------'
  a   b   c   d   e   f   g   h   i

Is the knot untied ?
    
Update (Nov 10, 2025)
    
,------------------------------------,
|*48  49 *53  69 *70  81 *80 *78 *76 | 9
| 47 *50  52  54 *68 *71  79  77 *75 | 8
|*46 *51  42 *55  56  67 *72  73 *74 | 7
|*45 *43 *40 *41  15 *57 *66  65  64 | 6
|*44 *39  35 *14  01 *16 *58 *63  62 | 5
| __  __  __  __  29  __ *17 *59 *61 | 4    02,13,34,36,38 [locked!]
| __  __  __  __  __  27  __ *18 *60 | 3    33,28,30
| __  __  32  __  __  __  24  21 *19 | 2
| __  09  __  __  __  __ *23  22 *20 | 1
'------------------------------------'
  a   b   c   d   e   f   g   h   i

(02,13,34,36,38) are locked into row 4 with (02)f4 forced,

and there are only two possible places for 28: e3, f4,

=> 36.(02)f4!, 37.(28)e3!, 38.(03)g3, 39.(04)f2, 40.(25)f1,

41.(30)d3! (since d4 is taken!) 42.(26)e2, 43.(05)e1

,------------------------------------,
|*48  49 *53  69 *70  81 *80 *78 *76 | 9
| 47 *50  52  54 *68 *71  79  77 *75 | 8
|*46 *51  42 *55  56  67 *72  73 *74 | 7
|*45 *43 *40 *41  15 *57 *66  65  64 | 6
|*44 *39  35 *14  01 *16 *58 *63  62 | 5
| __  __  __  __  29 *02 *17 *59 *61 | 4    13,34,36,38 [locked!]
| __  __  __ *30 *28  27 *03 *18 *60 | 3    33
| __  __  32  __ *26 *04  24  21 *19 | 2
| __  09  __  __ *05 *25 *23  22 *20 | 1
'------------------------------------'
  a   b   c   d   e   f   g   h   i

Now it is almost over! what would be a final move ?
    
Update Nov 11, 2025
    
,------------------------------------,
|*48  49 *53  69 *70  81 *80 *78 *76 | 9
| 47 *50  52  54 *68 *71  79  77 *75 | 8
|*46 *51  42 *55  56  67 *72  73 *74 | 7
|*45 *43 *40 *41  15 *57 *66  65  64 | 6
|*44 *39  35 *14  01 *16 *58 *63  62 | 5
| __  __  __  __  29 *02 *17 *59 *61 | 4    13,34,36,38 [locked!]
| __  __  __ *30 *28  27 *03 *18 *60 | 3    12,33,37 [locked!]
| __  __  32  __ *26 *04  24  21 *19 | 2    31 only place is d2
| __  09  __  __ *05 *25 *23  22 *20 | 1
'------------------------------------'
  a   b   c   d   e   f   g   h   i

44.(31)d2! (see comments at side of the grid) and now only singles remain.

48 49 53 69 70 81 80 78 76
47 50 52 54 68 71 79 77 75
46 51 42 55 56 67 72 73 74
45 43 40 41 15 57 66 65 64
44 39 35 14  1 16 58 63 62
38 36 13 34 29  2 17 59 61
37 12 33 30 28 27  3 18 60
11  8 32 31 26  4 24 21 19
10  9  7  6  5 25 23 22 20
    

Puzzle SX#9 (overall #85) (6x6 Sudoku-X (SE = 7.6); proposed Nov 9, 2025)

I propose the following Sudoku-X puzzle.

I have solved it (manually) in TWO steps (krakenless).

(generated and displayed with Sudoku6Explainer)

Sudoku-X

Hint (Updated again)
 Grid after basics

+-------------------+-------------------+
| 13    145   6     | 145   123   1234  | 6
| 1345  2     1345  | 13456 136   13456 | 5
+-------------------+-------------------+
| 146   3     14    | 156   126   125   | 4
| 1256  156   125   | 136   4     13    | 3
+-------------------+-------------------+
| 12346 146   1234  | 134   5     1346  | 2
| 13456 1456  135   | 2     136   146   | 1
+-------------------+-------------------+ Sudoku-X
  a     b     c       d     e     f

    
Update (Nov 10, 2025)

+-------------------+-------------------+
| 13    145   6     | 145   123   1234  | 6
| 1345  2     1345  | 13456 136   13456 | 5
+-------------------+-------------------+
| 146   3     4-1   | 156   126   125   | 4
| 1256  156   125   | 136   4     13    | 3
+-------------------+-------------------+
| 12346 146   1234  | 134   5     1346  | 2
| 13456 1456  135   | 2     136   146   | 1
+-------------------+-------------------+ Sudoku-X
  a     b     c       d     e     f

For the first move, how to eliminate (1)c4 ?    
    
Update (Nov 11, 2025)
+-------------------+-------------------+
|*13    145   6     | 145   123   1234  | 6
| 1345  2     1345  | 13456 136   13456 | 5
+-------------------+-------------------+
|*146   3    *4-1   |*156  *126   125   | 4
| 1256  156   125   |*136   4     13    | 3
+-------------------+-------------------+
| 12346 146   1234  | 134   5     1346  | 2
| 13456 1456  135   | 2     136   146   | 1
+-------------------+-------------------+ Sudoku-X
  a     b     c       d     e     f

Move 1 uses the marked cells (power of diagonal!):

either (4)c4 or there the naked pair (13)a6.d3.

The elimination of (1)c4 leads to:

+-------------------+-------------------+
| 13    145   6     | 145   123   1234  | 6
| 1345  2     135   | 13456 136   13456 | 5
+-------------------+-------------------+
| 16    3     4     | 156   126   125   | 4
| 1256  156   125   | 136   4     13    | 3
+-------------------+-------------------+
| 1236  16    123   | 134   5     1346  | 2
| 13456 1456  135   | 2     136   16    | 1
+-------------------+-------------------+
  a     b     c       d     e     f

How to finish the puzzle ?
    

Past Puzzles (83)

Problems

Slitherlink and Jigsaw Sudoku Layouts

Problem #1

Slitherlink

In the game called Slitherlink, can you show all the details

proving that the following configuration is impossible ?

Impossible pattern 222x

Hidden solution
Part 1

(My solution has a trivial initial observation, an easy Case 1 and Case 2 divided in two sub-cases)

We analyze the possible outcomes from this configuration but can already discard

all configurations in which the lower "2"-cell has vertical lines, or horizontal lines,

in both edges.

Also, this configuration

.-------------------
| .   .   .   .   . 
|           2       
| .   .   .   .   . 
|       2           
| .___.   .   .   . 
| | 2               
|A.   .   .   .   . 
| x                 
| .   .   .   .   . 

and this

.-------------------
| .   .   .   .   . 
|           2       
| .   .   .   .   . 
|       2           
| .   .   .   .   . 
|   2 |             
|A.___.   .   .   . 
| x                 
| .   .   .   .   . 

are clearly impossible,

(dead end at corner A).

Part 2

Case 1:

.-------------------
| .   .   .   .   . 
|           2       
| .   .   .   .   . 
|       2           
| .___.   .   .   . 
|   2 |             
| .   .   .   .   . 
| x                 
| .   .   .   .   . 
    

Now the following is forced

.-------------------
| .   .___.___.   . 
|         x 2 |     
| .   .___. x .   . 
| |   x 2 |         
| .___. x .   .   . 
|   2 |             
| .   .   .   .   . 
| x                 
| .   .   .   .   . 
    

and this leads to an impossibility in the cell at the corner, reached by three lines.

Part 3 Case 2:
.-------------------
| .   .   .   .   . 
|           2       
| .   .   .   .   . 
|       2           
| .   .   .   .   . 
| | 2               
| .___.   .   .   . 
| x                 
| .   .   .   .   . 

The following is a forced move

.-------------------
| .   .   .   .   . 
|           2       
| .   .B  .   .   . 
| |     2           
| . x .A  .   .   . 
| | 2 x             
| .___.   .   .   . 
| x                 
| .   .   .   .   . 
Part 3.1

Case 2.1: If a vertical line exists at AB, it forces

.-------------------
| .   .   .   .   . 
|     |     2       
| .C  .   .   .   . 
| |   | 2           
| . x .___.D  .   . 
| | 2 x             
| .___.   .   .   . 
| x                 
| .   .   .   .   . 

and any continuation for the line meeting corner C will create a loop (impossible).

Part 3.2

Case 2.2: the other possibility is to have the edge AB blocked, and then the bottom edge AD

of the "2"-cell in the middle needs to be blocked too, forcing the following configuration to be reached.

.-------------------
| .   .___.___.   . 
|         x 2 |     
| .   .___. x .   . 
| |   x 2 |         
| . x . x .   .   . 
| | 2 x             
| .___.   .   .   . 
| x                 
| .   .   .   .   . 

Now, we have an impossible situation in the cell at the corner, reached by three lines. □


(Using symmetry, the proven result establishes a well-known slitherlink pattern)

Problem #2

Invalid Jigsaw Sudoku Layouts

The following Jigsaw Sudoku Layout is invalid. Why ?

Invalid JSS Layout

(image created using SudokuExplainer)

In more detail

A Jigsaw Sudoku Layout is invalid if no Latin Squares exist for that Layouts.

Can you find a short, yet complete, explanation (no computations involved) ?

To my knowledge this question was first posed, and subsequently pursued, by Mathimagics.

see this post and this post.

Interesting Forums ( in particular, very fond of the NSPF! )


Created: February 12, 2024

Contact: sudo.jco.br@gmail.com